Search results for "Physics of the early Universe"
showing 10 items of 12 documents
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach
2008
Light sterile neutrinos might mix with the active ones and be copiously produced in the early Universe. In the present paper, a detailed multi-flavor analysis of sterile neutrino production is performed. Making some justified approximations allows us to consider not only neutrino interactions with the primeval medium and neutrino coherence breaking effects, but also oscillation effects arising from the presence of three light (mostly-active) neutrino states mixed with two heavier (mostly-sterile) states. First, we emphasize the underlying physics via an analytical description of sterile neutrino abundances that is valid for cases with small mixing between active and sterile neutrinos. Then,…
CMB spectral distortions in generic two-field models
2017
We investigate the CMB $\mu$ distortion in models where two uncorrelated sources contribute to primordial perturbations. We parameterise each source by an amplitude, tilt, running and running of the running. We perform a detailed analysis of the distribution signal as function of the model parameters, highlighting the differences compared to single-source models. As a specific example, we also investigate the mixed inflaton-curvaton scenario. We find that the $\mu$ distortion could efficiently break degeneracies of curvaton parameters especially when combined with future sensitivity of probing the tensor-to-scalar ratio $r$. For example, assuming bounds $\mu < 0.5 \times 10^{-8}$ and $r<0.0…
Slow roll in simple non-canonical inflation
2007
17 pages, 4 figures.-- ISI Article Identifier: 000245945000008.-- ArXiv pre-print available at: http://arxiv.org/abs/astro-ph/0701343
Astrophysical constraints on extended gravity models
2015
We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.
Renormalisation group improvement in the stochastic formalism
2019
We investigate compatibility between the stochastic infrared (IR) resummation of light test fields on inflationary spacetimes and renormalisation group running of the ultra-violet (UV) physics. Using the Wilsonian approach, we derive improved stochastic Langevin and Fokker-Planck equations which consistently include the renormalisation group effects. With the exception of stationary solutions, these differ from the naive approach of simply replacing the classical potential in the standard stochastic equations with the renormalisation group improved potential. Using this new formalism, we exemplify the IR dynamics with the Yukawa theory during inflation, illustrating the differences between …
On gravitational waves in Born-Infeld inspired non-singular cosmologies
2017
We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisatio…
Updated BBN bounds on the cosmological lepton asymmetry for non-zero 13
2011
We discuss the bounds on the cosmological lepton number from Big Bang Nucleosynthesis (BBN), in light of recent evidences for a large value of the neutrino mixing angle theta13. The largest asymmetries for electron and muon or tau neutrinos compatible with 4He and 2H primordial yields are computed versus the neutrino mass hierarchy and mixing angles. The flavour oscillation dynamics is traced till the beginning of BBN and neutrino distributions after decoupling are numerically computed. The latter contains in general, non thermal distortion due to the onset of flavour oscillations driven by solar squared mass difference in the temperature range where neutrino scatterings become inefficient …
Precision calculations of dark matter relic abundance
2019
The dark matter annihilation channels sometimes involve sharp resonances. In such cases the usual momentum averaged approximations for computing the DM abundance may not be accurate. We develop an easily accessible momentum dependent framework for computing the DM abundance accurately and efficiently near such features. We apply the method to the case of a singlet scalar dark matter $s$ interacting with SM through higgs portal $\lambda_{\rm hs}s^2 h^2$ and compare the results with different momentum averaged methods. The accuracy of the latter depend strongly on the strength of the elastic interactions and corrections are large if WIMP has negligible interactions beyond the main annihilatio…
Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings
2017
Apparent metastability of the electroweak vacuum poses a number of cosmological questions. These concern evolution of the Higgs field to the current vacuum, and its stability during and after inflation. Higgs-inflaton and non-minimal Higgs-gravity interactions can make a crucial impact on these considerations potentially solving the problems. In this work, we allow for these couplings to be present simultaneously and study their interplay. We find that different combinations of the Higgs-inflaton and non-minimal Higgs-gravity couplings induce effective Higgs mass during and after inflation. This crucially affects the Higgs stability considerations during preheating. In particular, a wide ra…
Observational signatures of Higgs inflation
2016
We investigate the dependency of Higgs inflation on the non-renormalisable matching between the low energy Standard Model limit and the inflationary regime at high energies. We show that for the top mass range $m_t \gtrsim 171.8$ GeV the scenario robustly predicts the spectral index $n_s \simeq 0.97$ and the tensor-to-scalar ratio $r\simeq 0.003$. The matching is however non-trivial, even the best-fit values $m_h=125.09$ GeV and $m_t=173.21$ GeV require a jump $\delta \lambda \sim 0.01$ in the Higgs coupling below the inflationary scale. For $m_t\lesssim 171.8$ GeV, the matching may generate a feature in the inflationary potential. In this case the predicted values of $n_s$ and $r$ vary but…